Discriminative Sparsity Graph Embedding for Unconstrained Face Recognition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph Regularized Within-Class Sparsity Preserving Projection for Face Recognition

As a dominant method for face recognition, the subspace learning algorithm shows desirable performance. Manifold learning can deal with the nonlinearity hidden in the data, and can project high dimensional data onto low dimensional data while preserving manifold structure. Sparse representation shows its robustness for noises and is very practical for face recognition. In order to extract the f...

متن کامل

Face recognition using discriminant sparsity neighborhood preserving embedding

Article history: Received 3 April 2011 Received in revised form 30 January 2012 Accepted 27 February 2012 Available online 4 March 2012

متن کامل

Sparsity Sharing Embedding for Face Verification

Face verification in an uncontrolled environment is a challenging task due to the possibility of large variations in pose, illumination, expression, occlusion, age, scale, and misalignment. To account for these intra-personal settings, this paper proposes a sparsity sharing embedding (SSE) method for face verification that takes into account a pair of input faces under different settings. The p...

متن کامل

Discriminative prototype selection methods for graph embedding

Graphs possess a strong representational power for many types of patterns. However, a main limitation in their use for pattern analysis derives from their difficult mathematical treatment. One way of circumventing this problem is that of transforming the graphs into a vector space by means of graph embedding. Such an embedding can be conveniently obtained by using a set of ‘‘prototype’’ graphs ...

متن کامل

Face Recognition using a Kernelization of Graph Embedding

Linearization of graph embedding has been emerged as an effective dimensionality reduction technique in pattern recognition. However, it may not be optimal for nonlinearly distributed real world data, such as face, due to its linear nature. So, a kernelization of graph embedding is proposed as a dimensionality reduction technique in face recognition. In order to further boost the recognition ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2019

ISSN: 2079-9292

DOI: 10.3390/electronics8050503